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To achieve better performance of a diffractive deep neural network, increasing its spatial complexity (neurons and
layers) is commonly used. Subject to physical laws of optical diffraction, a deeper diffractive neural network
(DNN) would be more difficult to implement, and the development of DNN is limited. In this work, we found
controlling the Fresnel number can increase DNN’s capability of expression and its spatial complexity is even less.
DNN with only one phase modulation layer was proposed and experimentally realized at 515 nm. With the
optimal Fresnel number, the single-layer DNN reached a maximum accuracy of 97.08% in the handwritten digits
recognition task. © 2022 Chinese Laser Press

https://doi.org/10.1364/PRJ.474535

1. INTRODUCTION

Supervised machine learning (ML) is widely used as one of the
most essential methods for many computer vision tasks [1,2],
including image classification [3,4], image segmentation [5,6],
and target or saliency detection [7–11]. Such ML algorithms
require large-scale parallel computing, such as convolution
operation and large matrix or vector-matrix multiplication
[4,12–15]. With the ever-increasing demand for computational
resources, advances in performance of electronic devices have
hit a bottleneck [16–18]. To meet the need, a new approach
called the optical neural network (ONN) has been proposed.
ONN naturally provides privileges of high parallelism, high-
speed calculation, and low energy consumption over electronic
devices [19–33]. ONN also has proved to be feasible and ef-
fective in solving many ML problems, and it can be used to
work as a image classifier, a speech recognizer, an autoencoder,
a recurrent neural network, and so on [19,20,26,27,34–42].
Recently, an all-optical ONN framework termed diffractive
deep neural network (D2NN) was proposed to provide oper-
ations of optical diffraction at the speed of light and reach
hundreds of billions of connections between neurons in a
power-efficient manner [26]. D2NN can accomplish some op-
tical logical operations and more image processing tasks as
well [42–47].

D2NN regards each phase modulation pixel on the hidden
layers as an artificial neuron. The connections between the hid-
den layers are determined by the transmission or reflection

coefficient for each neuron when light is traveling forward. The
values of neurons in D2NN are optimized by using the error
backpropagation algorithm, and exact phase values ϕ are con-
verted into a relative height map h (h � λϕ∕2πΔn, whereΔn is
the difference of relative index between the fabricated material
and the air). After D2NN is well trained, the passive neurons
can be fabricated by 3D printing or photolithography etching
[26,44,48–50]. In the manufacturing process, the allowed
phase errors are proportional to the working wavelength. This
means that D2NN’s performance at wavelengths shorter than
infrared is below expectations. Furthermore, when hidden
layers are added into D2NN to get better performance, the ac-
cumulation of errors owing to the misalignment of multiple
layers also remains a big problem. With the growing needs of
spatial complexity, especially neurons and layers, implementa-
tion difficulties arise as well. Hence, reducing D2NN’s space
complexity deserves further study while its capability of expres-
sion is kept.

In this work, we introduce a new approach toward designing
the phase-only all-optical ML framework by controlling the
Fresnel number that describes the regime of diffraction effects.
Making this diffraction-related parameter wet-set will optimize
the performance of a diffractive neural network (DNN) instead
of increasing the hidden layers in D2NN. To demonstrate how
the Fresnel number works, we propose the framework of a
single-layer diffractive neural network (SL-DNN), since its
space complexity is minimized to a great extent. We find that
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DNN with even single phase modulation layer can provide
good capability of expression. In numerical experiments, we
achieved a blind testing accuracy of 97.08% in the Mixed
National Institute of Standards and Technology (MNIST)
handwritten digit recognition task [51]. In our experiments,
we implemented SL-DNN, tested 1000 samples, and achieved
an accuracy rate of 92.70%.

2. THEORETICAL ANALYSIS

Phase-only D2NN describes a multidiffraction process to arbi-
trarily modulate the wavefront of light diffracted from an input
plane. The process can be treated as a matrix multiplication
operation on the input plane without the nonlinear activation
layer. As illustrated in Figs. 1(a) and 1(c), the diffraction process
of multilayer diffraction can be simply represented by a com-
plex-valued matrix M, and the optical intensity after the entire
diffraction process can be expressed as

o � juL�1j2 � jMu0j2, (1)

where u0 and uL�1 are the vectorized optical field at the input
and output layer, and o is the optical intensity of the output
layer. In Eq. (1), L represents the number of phase modulation
layers. The diffraction process between the successive two layers
can be characterized as

uinputi�1 � Duoutputi , (2)

where uinputi�1 is the optical field before layer i � 1 and uoutputi is
the optical field after layer i, and D is the diffraction process
between the two successive layers and is a complex-valued sym-
metric matrix. The phase modulation layer pi is added after
uinputi�1 , and the optical field becomes

uoutputi�1 � uinputi�1 ∘ pi : (3)

“∘” represents the Hadamard product, and the operation can be
transformed to matrix multiplication. Therefore, Eq. (3) can be
rewritten as

uoutputi�1 � diag�pi�Duoutputi : (4)

So far, the diffraction matrix M can be described by

M � D
Y1
i�L

�diag�pi�D�: (5)

In other words, M, as well as D2NN, is the transformation
matrix that maps vectors of the input plane (u0) into the output
plane (uL�1) in anN 2-dimensional Hilbert space, whereN is the
pixel number of every layer’s side length.M should have two ma-
jor properties to finish the classification task. One is that the row
vectors ofM need to be incompletely orthogonal, which allowsM
to implement many-to-one mapping so thatD2NN has the abil-
ity to cluster inputs of the same class. The other is that the value
of rows ofM has to be arbitrary. It provides the ability to separate
the different kinds of samples. To satisfy these two requirements,
research has focused on increasing neurons and layers of D2NN,
in other words, increasing its spatial complexity. In Fig. 1(c), the
diffraction matrix M of multilayer D2NN provides both the
many-to-one mapping and the arbitrariness. Generally speaking,
D2NN’s classification ability is strengthened when the number of
layers is increased [26]. With the increase of neurons and layers,
the difficulty of preparing phase modulation neurons and the
layer-to-layer alignment increases.

It is commonly considered that D2NN with few layers can
provide only one of these requirements mentioned above. In
Figs. 1(b) and 1(d), the diffraction matrix M of DNN with
one hidden layer can be divided by the Fresnel number F into
three cases, where

F � a2

λd
, (6)

and a is the pixel area, λ is the working wavelength, and d is the
layer-to-layer distance. As shown in Fig. 1(d), when F is ap-
proximately 101, it also means in the case of very near diffrac-
tion, the row vectors of MA are arbitrary but completely
orthogonal. It means only elements on the diagonal of the

Fig. 1. Schematic diagram of the frameworks of (a) deep and (b) SL-DNN; (c) the entire diffraction and multi-layer phase modulation process can
be regarded as a matrix multiplication by diffraction matrixM. (d) The diffraction matrix of SL-DNNwith different values of Fresnel number can be
represented by MA (∼101), MB (∼10−3), and MC (∼10−5).
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diffraction matrix have the capability to modulate the incident
light. The input and the output layers are mapped one-to-one
by MA, and it cannot afford the requirement of many-to-one
mapping. Likewise, when F is a pretty small value (approxi-
mately 10−5), it also means in the case of very far diffraction,
all row vectors of MC are almost linearly related. In MC , all
elements are almost identical, which means rank�MC � ≈ 1 ≪
rank�MC ju0�. All u0 will have the same pattern at the output
layer, and DNN offers no ability to modulate the incoming
light. This leads to the result that the diffraction matrix can
only provide many-to-one mapping but cannot separate sam-
ples from different classes.

In order to resolve the contradiction between DNN’s prepa-
ration difficulty and the requirements of its ability of expres-
sion, we propose a new approach for regulating an SL-DNN
by controlling the Fresnel number F so that it can also meet
both requirements mentioned above. DNN regards connec-
tions originating from each neuron as the kernels of convolu-
tional neural network. If F is too large, the kernel size will be
1 × 1, and if F is too small, the kernel size will be very large and
the values of the kernel are almost identical. An appropriate F
provides both enough receptive field and different values of the
kernel. In Fig. 1(d), MB with a proper F is more like the M in
Fig. 1(c) than MA and MC . F determines the property of M.

We can compare M with MB and find out that an appro-
priate F can provide a many-to-one mapping of the input layer
to the output layer even if only one phase modulation layer
is applied. In the meantime, good arbitrariness can support
SL-DNN to accomplish tasks like MNIST handwritten digit
recognition. Furthermore, when F ∈ �4∕N 2; 2∕N �, SL-DNN
can provide enough ability of expression and show good per-
formance in such a classification job. More information is pro-
vided in Appendix A.

3. IMPLEMENTATION OF DNN AT DIFFERENT
FRESNEL NUMBERS

A. Training Methods
In Fig. 2, SL-DNN consists of two diffraction and one phase
modulation process. The first diffraction is from input layer to
the phase modulation layer (hidden layer), and the second dif-
fraction is from the hidden layer to the output layer. Note that
F is given by the pixel size a, the diffraction distance d , and the
working wavelength λ. To get different F in the experiment,
there is no need to change a or d every time. We can simply
resize the input layer, and this operation equivalently changes F
when the parameters of DNN are fixed. We use the angular
spectrum (AS) method to simulate these two diffraction proc-
esses. This can be written as

F �ui�1� � F �ui� ∘ H , (7)

where ui and ui�1 are the optical field at layer i and i � 1, H is
the transfer function in the AS method, and F �·� is the Fourier
transform. The process of phase modulation is provided by a
Hadamard product of the incoming optical field and the phase
delay part. Phase values are optimized via the error backpropa-
gation algorithm. We use softmax-cross-entropy (SCE) loss and
the mean squared error (MSE) loss as loss functions for our
training. SCE loss can be defined as

eSCE � −
XT
j�1

yj log sj, (8)

and T represents the number of categories, yj is the one-hot
encoding of ground truth, and sj � eoj∕ΣT

i�1e
oi is the softmax

operation of output, where oi is the sum of light intensity in the
selected region of digit i on the output layer shown in Fig. 2.
MSE loss can be defined as

eMSE � ∥o − ogt∥22, (9)

where o is the light intensity on the output plane and ogt is the
ground truth.

B. Simulation Results
To demonstrate the performance of SL-DNN in the MNIST
handwritten classification task, we trained the network with
60,000 images of 10 digits. After SL-DNN had been well
trained, we numerically tested the model with a test set of an-
other 10,000 images. In Fig. 3(b), SL-DNN achieves an accu-
racy of 94.94% in blindly testing its performance when we
use SCE and MSE loss functions whose ratio is 0.2:0.8. We
set the dimension of every layer to be 200 × 200 and selected
an appropriate F to achieve SL-DNN’s best performance. SL-
DNN also achieves the highest accuracy of 97.08%
when using SCE loss only. More information about the sim-
ulation and experiments is provided in Appendix A.

C. Experimental Results
To implement SL-DNN, we adapted the experimental setup
shown in Fig. 2. In the experiment, we used a programmable
digital micromirror device (DMD) to form the input patterns
of data sets and another programmable reflective phase-only

Fig. 2. Schematic experimental setup of SL-DNN. A laser beam at
515 nm was used. The linearly polarized beam was incident on the
DMD and images of digits in the MNIST data set were illuminated
by DMD. After that, light was normally reflected and propagated to
the SLM. SLM modulates the phase of light field and it was reflected
by a beam splitter (BS). The output layer is shown by the incoming
light received by a CMOS camera. The image dimensions of digits are
resized to N and N r to show different F when the diffraction distance
d is fixed. Colors of two light paths are only to distinguish between
two SL-DNNs with different F .
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liquid-crystal spatial light modulator (LC-SLM) as the phase
modulation layer. We also used a complementary metal oxide
semiconductor (CMOS) image sensor to read the light inten-
sity at the output layer. The working wavelength of light was at
515 nm based on a diode-pumped laser. In our experiment,
input digits were illuminated by the collimated laser beam in-
cident onto the DMD, and then images in the test set were
displayed on DMD. Before that, images were resized and bi-
narized. We used a 2-bit reflective DMD to form the shapes of
different input digits. After the light was reflected and traveled a
distance of d 1 (≈164.7 mm), we used a reflective phase-only
SLM as the phase modulation layer. This will lead to a problem:
the reflected light coming from the untrained pixels outside the
region we have trained will also affect the optical field distri-
bution at output plane. So, we enlarge the dimension of phase
modulation layer to 800 × 800 to avoid this problem. We
trained SL-DNN, and phase values of the hidden layer are up-
loaded to the SLM. After the second diffraction of distance of
d 2 (≈173.5 mm), a CMOS camera received the light intensity
signal. As shown in Fig. 3(a), we manually selected the ten re-
gions of output light distribution captured by the CMOS cam-
era. Of these ten regions, the highest total light intensity shows
the recognized digit. In Fig. 3(c), we got an accuracy rate of
92.70% in blindly testing 1000 randomly selected samples
in the test set when N � 200. In Fig. 3, we also provide
the energy distribution of the ten selected regions. It is obvious
that light has been focused in the specific region of each test
sample. Note that, when we get into the experiment, errors in
the diffraction distance measurement and of the instruments

themselves cause little energy misdistribution on the output
layer in comparison to simulation results. The fill factors of
the DMD and SLM also slightly affect the reconstruction of
the diffraction process. All these lead to a decrease in accuracy
of the experiments compared with numerical simulation.

To illustrate the relation between Fresnel number F and the
performance of SL-DNN further, we tested the network at dif-
ferent F numerically and experimentally. The experimental

Fig. 3. (a) Images of MNIST handwritten input digits are binarized. Ten light intensity detector regions I 0, I 1, � � � , I 9 are set on the output
plane, respectively. The detector with maximum sum of intensity shows the predicted number. (b) The confusion matrix and energy distribution
percentage of F show numerical test results of blindly testing 10,000 images, and it achieves the max accuracy rate of 94.94%. (c) The confusion
matrix and energy distribution percentage for the experimental results. We use 1000 different handwritten digits in the test set as input and achieve
an accuracy rate of 92.70%.

Fig. 4. Accuracy of SL-DNN as an MNIST handwritten digit clas-
sifier with changing Fresnel number F. For different working wave-
lengths, SL-DNN has a same range of F approximately from 10−4 to
10−2, which shows SL-DNN’s good performance.
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setup is fixed so that we can see from Fig. 2 that resizing the
input images equivalently changes the F . We can see from
Fig. 4 that at different wavelengths of light, there is the same
F range, which is from approximately 10−4 to 10−2. If F is
in this range, SL-DNN can provide good performance and
has good ability of expression. We also experimentally tested
SL-DNN at different F by resizing the input images on
DMD from initially 200 × 200 to 50 × 50, 500 × 500, and
800 × 800, respectively, while keeping the experiment setup
fixed. The accuracy of another three experiments we have got-
ten is 64.10%, 86.60%, and 74.10%, respectively. More infor-
mation about the experiment is shown in Appendix B.

4. CONCLUSION AND DISCUSSION

A. Conclusion
To conclude, we propose a new approach that shows that con-
trolling the diffraction-related parameter F can improve the
network’s capability of expression and optimize the perfor-
mance of the DNN. As long as the diffractive parameters are
well set, a DNN with only single phase-only modulation layer
can also be applied to accomplish object classification tasks. As
the space complexity is reduced, it is possible to implement
DNN at a shorter wavelength. We numerically tested SL-DNN
performance in MNIST handwritten recognition task and
reached the highest accuracy rate of 97.08%. We then exper-
imentally realized SL-DNN in the visible range by using a
DMD as the input layer and a reflective phase-only SLM as
the phase modulation layer. We also experimentally tested
the performance of SL-DNN and got an accuracy rate of
92.70%. This article reveals a new modulation dimension to
optimize the performance of DNN and makes it possible to
implement more complex and miniaturized all ONN devices.

B. Discussion on the Difference between the Fresnel
Number Model and Fully Connected Model
The fully connected model proposed by Lin et al. [26] and
Chen et al. [48] ensures that pixels on the successive phase
modulation layers are actually linked. It shows that the diffrac-
tion distance should be bounded below by dmin. Their conclu-
sion is appropriate for multilayer DNNs. In this article, we
show that if diffraction distance is substituted for the
Fresnel number, it should be bounded above by Fmax. This con-
clusion is self-consistent with Lin’s and Chen’s work. Moreover,
we find that the Fresnel number is also bounded below by Fmin,
and it is merely related to the dimension of inputs. When the
Fresnel number is in this optimal range, which has both upper
and lower bounds, DNN can have a good performance. Our
conclusion further applies to DNN with a single-phase modu-
lation layer. More information is shown in Appendix A.

C. Discussion on DNN at Broadband Incoherent
Light Incidence
To make DNN into a practical application, the optimization of
DNN in the case of broadband incoherent light incidence is
worth investigation. Speaking of broadband illumination, we
first think of multichannel DNN with coherent light. SLMs
can be used as gratings to separate different colors of light and
as lenses to focus light at different locations. For the single fre-
quency of light, the theory on the performance of network with

respect to the Fresnel number still works. When the answers
from the DNN from every channel are combined or retrieved,
broadband DNNs can be realized. Since there are difficulties in
the implementation of such a DNN with a single SLM, more
SLMs and metasurfaces can be used to respond to light at dif-
ferent frequencies.

Moreover, holography techniques are useful in the imple-
mentation of DNNs. Self-interference incoherent digital holog-
raphy (SIDH) is one of the techniques that can record the
holographic information from the object illuminated by the in-
coherent light [52]. We believe that overlay phase values of
SLMs can be trained to realize classification tasks, since the ini-
tial phase encoding can be optimized by the Gerchberg–Saxton
algorithm [53].

D. Discussion on Optical Nonlinearity of DNN
Optical nonlinearity can be implemented by using nonlinear
materials as diffractive layers in DNNs. In the framework of
DNNs, the only nonlinear operation without optical nonline-
arity is the recording of light intensity at the camera. This kind
of operation is different from the commonly known “nonlinear
activation function.” The difference is that it has no “activation”
judgment. When we add a complex-valued activation function,
such as modReLU, after the phase modulation layer, the per-
formance of the DNN will be improved. More information is
shown in Appendix A. Although nonlinear activation function
is applied, SL-DNN cannot be called a “deep” neural network.
When activation functions or optical nonlinearity layers are ap-
plied after every layer in multilayer DNNs, a deep nonlinear
DNN can be realized and will have better performance.
Optical nonlinearity requires immense light intensity, so that
the implementation of nonlinear DNN at low-light intensity
deserves further investigation.

APPENDIX A: NUMERICAL EXPERIMENTS

1. Data Set Preprocessing
Input images in MNIST handwritten data set of ten digits
(0,1, � � � ; 9) are resized and binarized by using the image resize
algorithm based on OpenCV. We use the resampling methods
with the pixel area relation provided by OpenCV. The limit of
sampling in the Fourier space may cause inaccuracy in simu-
lation. So, each sample image employed zero padding in real
space to limit the computational error. It can be written as

ũi �

0
B@

0 � � � 0
..
.

ui
..
.

0 � � � 0

1
CA: (A1)

2. Derivation of Optimal Range of the Fresnel
Number
Let d be the diffraction distance between the successive two
layers ui and ui�1 and d remain the same value in the
DNN. Let r be the distance of neuron on one layer and the
other on the next layer. We can simply get

r �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d 2 � �N · a�2

p
, (A2)

where N is the layer’s dimension of one side and a is the pixel
size. The neurons receive the information that the maximum
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phase difference is determined by the secondary wave diffrac-
tion. It should satisfy the following inequality, which is

ϕr − ϕd ≥ 2n1π: (A3)

It can also be rewritten as

r − d ≥ n1λ: (A4)

Then, we can get
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d 2 � �N · a�2

p
− d ≥ n1λ,

d 2 � �N · a�2 ≥ �n1λ�2 � d 2 � 2n1λd ,

a2

λd
≥

n21λ
N 2d

� 2n1
N 2 : (A5)

Fresnel number F is defined by Eq. (6). We can substitute it
into Eq. (A5) and get

F ≥
n21λ
N 2d

� 2n1
N 2 : (A6)

Normally, λ∕d is a very small and negligible amount. So, we
can get

F ≥
2n1
N 2 : (A7)

In Fig. 4, we can get n1 ≈ 2.
Since the shape of each pixel is a square, the diffraction pat-

tern of a single pixel has its own energy distribution. It can be
expressed as

I�x, y� � I 0sinc2�α�sinc2�β�, (A8)

where �x, y� is the coordinate of pixel at output plane, and

α � kxa
2d

� πxa
λd

,

β � kya
2d

� πya
λd

:

We let I � 0 and can get
πxa
λd

� n2π, n2 ∈ N: (A9)

The max x or y is supposed to be N · a. So, we can get the
inequality that

F ≤
n2
N

, (A10)

and here, we can also see from Fig. 4 that n2 ≈ 2. So far, we
know that when F ∈ �2n1∕N 2, n2∕N � and n1 ≈ 2, n2 ≈ 2,
SL-DNN has a good performance as an MNIST handwritten
digits classifier. In this study, we let N � 200. So, we can
get F ∈ �2 × 10−4; 1 × 10−2�.

In Fig. 5, a large F shows that the DNN provides a one-to-
one mapping, and a very small F shows that DNN provides a
many-to-one mapping but no arbitrary desirability. An appro-
priate F gives DNN a good ability of expression.

3. Training Results
In Fig. 6, the SL-DNN configuration on the MNIST blind
testing data set is demonstrated. Also, we tested the perfor-
mance of the SL-DNN within a certain range of phase error
of phase modulation layer and diffraction distance error.
Results are shown in Fig. 7 and Fig. 8, respectively.

In the experiments, we use both SCE and MSE loss func-
tions to train the phase values of the SL-DNN. To get the high-
est accuracy from the MNIST data set, we numerically trained
the SL-DNN using SCE loss function only and achieved an
accuracy rate of 97.08%. The result is shown in Fig. 9.

Fig. 5. Optical intensity of single-pixel illumination at different F.

Fig. 6. Classification accuracy, MSE, and SCE loss of SL-DNN
trained with MSE and SCE loss function for MNIST handwritten
recognition.

Fig. 7. Accuracy of SL-DNN in MNIST handwritten recognition
within a certain range of phase error.
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We also tested the performance of the SL-DNN at a fashion
MNIST recognition task and achieved an accuracy rate of
86.57%. The result is shown in Fig. 10.

Furthermore, we add the modReLU activation function
after the phase modulation layer p, and it can be described as

modReLU�u1� � ReLU�ju1j � b�eiϕu1 : (A11)

The nonlinear activation function slightly increases the accuracy
rate of the SL-DNN at the MNIST and fashion MNIST recog-
nition task to 97.38% and 88.08%, respectively. The results are
shown in Fig. 11.

APPENDIX B: EXPERIMENTS

1. Experimental Setup
The experimental setup of the SL-DNN is shown in Fig. 12.
A linear polarizer (LP) was placed to get linearly polarized light.
Another LP filter was placed before the CMOS image sensor,
and it was used as an analyzer whose direction of polarization
was oriented parallel to the long axis of the SLM. A half-
wave (HW) plate was placed between the LP and the DMD

Fig. 8. Accuracy of SL-DNN in MNIST handwritten recognition
within a certain range of diffraction distance error.

Fig. 9. Confusion matrix and energy distribution of SL-DNN at
MNIST recognition task using SCE loss function only.

Fig. 10. Confusion matrix and energy distribution of SL-DNN at
fashion MNIST recognition task.

Fig. 11. Confusion matrix and energy distribution of SL-DNN
with modReLU nonlinear activation function at MNIST and fashion
MNIST recognition task.

Fig. 12. Experimental setup of SL-DNN.
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to eliminate zero-order diffraction as much as possible. The
angle between incident light and its normal is about 24°.

2. DMD and SLM Settings
We used a digital mirror device (DMD) to realize a DMD pixel
size of 7.6 μm. We used a reflective phase-only LC-SLM as the
phase modulation layer; its pixel size is 8 μm.

Since the pixel sizes of the DMD and SLM are not compat-
ible, we resize the dimension of the input plane to satisfy the
condition that the overall size of the input plane is the same as
that of the phase modulation layer.

We use a reflective phase-only SLM as the phase modulation
layer. This will lead to a problem that the unloaded pixels out-
side the region we have trained will also affect the optical field
distribution at the output plane. So, we enlarge the dimension
of the phase modulation layer to 800 × 800 to avoid this prob-
lem. Before we upload the phase values to the SLM, we need to
do the phase calibration. The result is shown in Fig. 13.

3. Experimental Results
We also tested the performance of the SL-DNN by blindly test-
ing the same 1000 randomly selected samples. The confusion
matrix and energy distribution of four experiments by resizing
the images of input digits to 50 × 50, 200 × 200, 500 × 500,
and 800 × 800 are shown in Fig. 14 (the experimental result
of resizing the images to 200 × 200 is shown in context).
The accuracy rate of these four experiments is 64.10%,
92.70%, 86.60%, and 74.10%, respectively.

Disclosures. The authors declare no conflicts of interest.

Data Availability. Data underlying the results presented
in this paper are not publicly available at this time but may
be obtained from the authors upon reasonable request.

Fig. 13. Phase values modulated by SLM without calibration (red
line) and the desired shifted phase (green line).

Fig. 14. Experiment results of resizing the images of input digits to 50, 500, and 800, respectively, and equivalent Fresnel number F is
approximately 1 × 10−2, 8 × 10−4, and 5 × 10−5.
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